博客
关于我
MapReduce实现两表join_join的类型
阅读量:386 次
发布时间:2019-03-05

本文共 1564 字,大约阅读时间需要 5 分钟。

Hadoop Join类型与排序优化

Hadoop中的Join操作是处理大规模数据时的重要技能之一,本文将详细介绍其类型以及排序方式。

Join类型

在Hadoop中,Join操作用于将不同文件中的数据对齐,是数据处理的核心操作之一。常见的Join类型包括reduce side join、map side join、SemiJoin以及reduce side join结合BloomFilter等。

Reduce Side Join

reduce side join是最基础的Join类型,其核心思想是在map阶段为数据打上来源标签,在reduce阶段对同一key的数据进行笛卡尔乘积连接。这种方式简单直接,但存在数据传输量大、效率低下的问题。

Map Side Join

针对reduce side join效率低下的问题,Hadoop引入了map side join。这种Join类型适用于一个表较大、另一个表较小的情况。小表可以多次复制并存储在内存中,大表只需遍历处理即可快速查找对应的key进行连接。这大大减少了reduce阶段的处理负担。

SemiJoin(半连接)

SemiJoin从分布式数据库中借鉴而来,其核心思想是提前过滤数据。在map阶段,将小表的key提前过滤并存储到内存中,大表的数据在map阶段就可以过滤掉不需要的部分,从而减少reduce阶段的负担。

Reduce Side Join + BloomFilter

当小表的key集合较大时,直接存储到内存中可能不够用。BloomFilter作为一种空间换时间的数据结构,在此处可以有效管理小表的key集合,减少内存占用,同时仍能在map阶段过滤大表中的不相关数据。

排序方式

Hadoop默认按key排序,但有时需要按value排序。以下是两种常用排序方法:

二次排序

默认情况下,Hadoop按key排序。要按value排序,可以采用以下方法:

  • 基于内存的排序:在reduce阶段对单个key对应的所有values进行排序。这种方法效率高,但可能导致内存不足。

  • value-to-key转换:将key和value拼接成一个组合键,实现自定义的排序方式。这需要自定义Partitioner并配置合适的组合键生成方式。

  • Python代码实现

    以下是实现二次排序的Python示例:

    from operator import sortfrom functools import cmp_to_keydef custom_sort_key(value):    return (value['key'], value['value'])def main():    data = [        {'key': 'a', 'value': 1},        {'key': 'b', 'value': 2},        {'key': 'a', 'value': 3}    ]    sorted_data = sorted(data, key=cmp_to_key(lambda x, y: (x['key'], x['value']) if x['key'] == y['key'] else -1 if x['key'] < y['key'] else 1))    for item in sorted_data:        print(item['key'], item['value'])if __name__ == "__main__":    main()

    以上代码实现了基于value的二次排序,适用于需要按value排序的场景。

    通过以上方法,可以在Hadoop中灵活配置Join类型和排序方式,充分发挥数据处理能力。

    转载地址:http://dqrg.baihongyu.com/

    你可能感兴趣的文章
    numpy
    查看>>
    Numpy 入门
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>