博客
关于我
MapReduce实现两表join_join的类型
阅读量:386 次
发布时间:2019-03-05

本文共 1564 字,大约阅读时间需要 5 分钟。

Hadoop Join类型与排序优化

Hadoop中的Join操作是处理大规模数据时的重要技能之一,本文将详细介绍其类型以及排序方式。

Join类型

在Hadoop中,Join操作用于将不同文件中的数据对齐,是数据处理的核心操作之一。常见的Join类型包括reduce side join、map side join、SemiJoin以及reduce side join结合BloomFilter等。

Reduce Side Join

reduce side join是最基础的Join类型,其核心思想是在map阶段为数据打上来源标签,在reduce阶段对同一key的数据进行笛卡尔乘积连接。这种方式简单直接,但存在数据传输量大、效率低下的问题。

Map Side Join

针对reduce side join效率低下的问题,Hadoop引入了map side join。这种Join类型适用于一个表较大、另一个表较小的情况。小表可以多次复制并存储在内存中,大表只需遍历处理即可快速查找对应的key进行连接。这大大减少了reduce阶段的处理负担。

SemiJoin(半连接)

SemiJoin从分布式数据库中借鉴而来,其核心思想是提前过滤数据。在map阶段,将小表的key提前过滤并存储到内存中,大表的数据在map阶段就可以过滤掉不需要的部分,从而减少reduce阶段的负担。

Reduce Side Join + BloomFilter

当小表的key集合较大时,直接存储到内存中可能不够用。BloomFilter作为一种空间换时间的数据结构,在此处可以有效管理小表的key集合,减少内存占用,同时仍能在map阶段过滤大表中的不相关数据。

排序方式

Hadoop默认按key排序,但有时需要按value排序。以下是两种常用排序方法:

二次排序

默认情况下,Hadoop按key排序。要按value排序,可以采用以下方法:

  • 基于内存的排序:在reduce阶段对单个key对应的所有values进行排序。这种方法效率高,但可能导致内存不足。

  • value-to-key转换:将key和value拼接成一个组合键,实现自定义的排序方式。这需要自定义Partitioner并配置合适的组合键生成方式。

  • Python代码实现

    以下是实现二次排序的Python示例:

    from operator import sortfrom functools import cmp_to_keydef custom_sort_key(value):    return (value['key'], value['value'])def main():    data = [        {'key': 'a', 'value': 1},        {'key': 'b', 'value': 2},        {'key': 'a', 'value': 3}    ]    sorted_data = sorted(data, key=cmp_to_key(lambda x, y: (x['key'], x['value']) if x['key'] == y['key'] else -1 if x['key'] < y['key'] else 1))    for item in sorted_data:        print(item['key'], item['value'])if __name__ == "__main__":    main()

    以上代码实现了基于value的二次排序,适用于需要按value排序的场景。

    通过以上方法,可以在Hadoop中灵活配置Join类型和排序方式,充分发挥数据处理能力。

    转载地址:http://dqrg.baihongyu.com/

    你可能感兴趣的文章
    nacos集群搭建
    查看>>
    Nessus漏洞扫描教程之配置Nessus
    查看>>
    Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
    查看>>
    Netpas:不一样的SD-WAN+ 保障网络通讯品质
    查看>>
    Netty WebSocket客户端
    查看>>
    Netty工作笔记0011---Channel应用案例2
    查看>>
    Netty工作笔记0014---Buffer类型化和只读
    查看>>
    Netty工作笔记0050---Netty核心模块1
    查看>>
    Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
    查看>>
    Netty常见组件二
    查看>>
    netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
    查看>>
    Netty核心模块组件
    查看>>
    Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
    查看>>
    Netty源码—2.Reactor线程模型一
    查看>>
    Netty源码—4.客户端接入流程一
    查看>>
    Netty源码—4.客户端接入流程二
    查看>>
    Netty源码—5.Pipeline和Handler一
    查看>>
    Netty源码—6.ByteBuf原理二
    查看>>
    Netty源码—7.ByteBuf原理三
    查看>>
    Netty源码—7.ByteBuf原理四
    查看>>